NATURE'S DESIGN FOUR BILLION YEARS OF LAND AND WATER EVOLUTION

Bob Zimmerman

Charles River Watershed Association

www.charlesriver.org

BLUE CITIES:

SUBWATERSHED LANDSCAPE RESTORATION

KIRA SARGENT, LANDSCAPE DESIGN HGSD, SASAKI ASSOCIATES

O. COLOR

TRIBUTARY RESTORATION

CRWA

Stream Daylighting-Visualization

STREET STRATEGIES

REGULATORY CHANGE: RESIDUAL DESIGNATION

Land Cover Distribution - Charles River Watershed

Distribution of Annual Phosphorus Load to the Charles River by Source Category (1998-2002)

PROPERTY VALUE BENEFITS OF STREET GREENING

- Residential property value enhancement based on survey of GI literature
 - Found 2% to 4% increase in value of properties on greened streets
- Identified towns with greening potential
 - CRWA analysis identified towns with greater than 50% canopy cover → Excluded
 - Towns with less than 50% canopy cover range from Needham (48%) to Everett (5%)
- Estimated potential linear extent of greening in selected towns (5%-10% of residential street mileage)
- Multiply greening mileage by average property value per linear mile of residential street in each of the greened towns

PROPERTY VALUE BENEFITS OF STREET GREENING

	ESTIMATE	
PARAMETER	LOWER	UPPER
Linear Extent of Street Greening in Selected Towns (miles)	230	460
Baseline Residential Property Value on Greened Streets	\$16,428,400,000	\$32,856,700,000
Increment in Value Based on Literature Review	2%	4%
Aggregate Value Increase	\$328,600,000	\$1,314,300,000
Annualized Value Increase	\$23,800,000	\$95,200,000

AVOIDED STORMWATER BMP COSTS

- Annual savings relative to conventional BMPs
- Translate pilot site findings to savings per acre of GI
 - Literature review indicates savings of \$0.005 to \$0.01 per gallon of stormwater treated
 - Pilot studies estimated savings based on stormwater quantities treated
 - Divided annual BMP savings associated with each pilot site by acreage of GI installed at the site → savings per acre
- CRWA estimated total acreage of GI installations in study area
- Multiply GI acreage by avoided BMP cost per acre

	ESTIMATE	
PARAMETER	LOWER	UPPER
Annual Avoided Cost per Acre	\$41,367	\$262,942
Total Acreage of New GI in Study Area	1,972	
Annual Avoided BMP Costs	\$81,574,942	\$518,522,576

Property Address:

Select Solution

Select Stormwater Control goals and type to determine the cost to meet the phosphorus reduction goal of 65% on your site.

Blue Cities Exchange

Phosphorus Trading for the Charles River

Select Stormwater Control Goals

The Exchange Cost Analysis

Aesthetic	OHigh	O Medium	OLow
TSS/Metals Reduction	High	O Medium	OLow
Phosophorus Reduction	⊖High	O Medium	OLow
Nitrogen Reduction	OHigh	O Medium	OLow
Bacteria Reduction	OHigh	Medium	OLow
Peak Flow Reduction	OHigh	OMedium	OLow
Volume Reduction	OHigh	O Medium	

Select Stormwater Control (percent ranking by the Exchange based on site and goals)

Impervious Area (acres): 0.00

Gravel Wetland (76%)

Bioretention (61%)

Subsurface

Chamber

(75%)

Tree Filter (61%)

Infiltration Trench

(75%)

Wet Extended **Detention Basin** (61%)

Infiltration Basin

(68%)

Dry Extended

Detention Basin

(46%)

Rain Garden

(68%)

Vegetated Swale (46%)

Stormwater Control Costs

- Load Reduction (%)
- Site Constraint

Partly developed area

Expensive stormwater management – due to space constraints, poor soils, contamination

COMMUNITY WATER AND ENERGY RESOURCE CENTER(CWERC) GENERATE REVENUE, RESTORE MORE NATURAL HYDROLOGY

COMMUNITY WATER AND ENERGY RESOURCE CENTERS (CWERCS)

- Treat and resell a portion of the water (MBR)
- Capture and use/sell thermal energy (heat pump/exchange)
- Produce and use/sell biogas through co-digestion (CHP)
- Capture nutrients (N) for resale
- Produce compost for resale (2 tiers, separating sludge and SSO streams)

RESOURCE RECOVERY CWERC MODELING NEIGHBORHOOD #I TECHNICAL RESULTS

	Unit Cost/Fee Assumed	Total Volume Produced	Total Value Produced	Volume Used Onsite
Reuse Water Sales	\$2.20/1000 gallons	I.5 MGD	\$1,201,000/yr	None
Thermal Energy Capture	\$9.77/MMBTU	292,981 MMBTU/yr*	\$2,494,000/y r** (\$715,000 net)	188,466 MMBTU/yr**
Biogas Conditioning and CHP	\$89 /MWh (\$0.089/KWh) (sale)	7,480 MWh/yr	\$665,700/yr	3,870 MWh/yr (\$121/MWh rate for usage)
Sludge Digester Compost	\$25/cu. yds.	770 cu. yds./yr	\$19,200/yr	None
Food waste Digester Compost	\$12/cu. yds.	12,650 cu. yds./yr	\$151,800/yr	None
Nitrogen Recovery	\$0.70/Ib N	85,100 lbs-N/yr	\$59,600/yr	None
Food Waste Tipping Fees	\$80/wet ton (\$0.025/lb)	80 ton/day accepted	\$1,440,000/yr	All
Renewable Energy Credits	\$65.27/MWh		\$439,400	

* Includes heat capture from CHP unit

**Includes energy to run heat pump which is available as output but is a cost to the plant

SUMMARY OF ANNUAL BENEFITS

		VALUE	
	BENEFIT CATEGORY	LOWER	UPPER
Additive	Energy Recovery and Energy Savings	\$3,727,535	\$3,982,105
	Reduced Carbon Emissions	\$334,635	\$1,722,388
	Reduced Criteria Pollutant Emissions	\$55,909	\$139,392
	Carbon Sequestration from GI	\$3,991	\$20,679
	Air Quality Benefits from Greening	\$6,755	\$16,889
	Avoided Stormwater BMP Costs	\$1,572,345	\$3,144,689
	Avoided Underpinning Costs	\$8,600,000	\$22,900,000
	Stream Daylighting Benefits	\$139,442	\$1,426,351
	TOTAL	\$14,440,612	\$33,352,494
Areas of Significant Overlap	Property Value (Street Greening)	\$1,522,778	\$3,045,556

SUMMARY OF ANNUAL BENEFITS: EXPANSION SCENARIO I

		ESTIMATE	
	BENEFIT CATEGORY	LOWER	UPPER
Scaled	Energy Recovery – Electricity	\$20,600,000	\$21,200,000
	Energy Recovery – Heat	\$136,400,000	\$136,400,000
	Emissions Reduction – Electricity	\$10,400,000	\$25,700,000
	Emissions Reduction – Heat	\$12,600,000	\$73,300,000
	Avoided Stormwater BMP Costs	\$81,600,000	\$518,500,000
	Property Value Enhancement (Greening)	\$23,800,000	\$95,200,000
	Avoided Underpinning Costs	\$29,500,000	\$198,300,000
	SUBTOTAL	\$315,000,000	\$1,068,700,000
Threshold	Charles River Flow Enhancement	\$4,200,000	\$8,700,000
	Swift River Flow Enhancement	\$2,700,000	\$3,300,000
	Avoided Cost of Water Deliveries	\$8,300,000	\$8,300,000
	Annualized Capital Investment Avoided	\$52,700,000	\$135,000,000
	SUBTOTAL	\$67,900,000	\$155,300,000
GRANDTOTAL		\$382,900,000	\$1,224,000,000
	CWERC TOTAL	\$270,600,000	\$598,200,000

TRANSFORMATION: WATER INFRASTRUCTURE FOR A SUSTAINABLE FUTURE

AVAILABLE ON AMAZON FOR THE KINDLE APP

www.charlesriver.org

